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The collective variables method with a reference system is developed for the case 
of the grand canonical ensemble for a multicomponent continuous system. The 
method is used to investigate phase transitions in a binary system. For a binary 
symmetrical system the relations between microscopic parameters determining 
the alternation of gas-liquid and separation phase transitions are found. The 
functional of the grand partition function of the symmetrical mixture is 
examined in the framework of parameters containing the separation point. The 
system is described with two sets of collective variables: p~, a set connected with 
the gas-liquid critical point, and ck, a set connected with the separation 
phenomenon. The fourfold basic density measure is constructed in ck-variable 
phase space which contains the variable c o connected with the order parameter 
of the system. It is shown that the problem can be reduced to the 3D Ising 
model in an external field. 

KEY W O R D S :  Multicomponent system; collective variable; symmetrical 
system; gas-liquid and separation phase transitions; fourfold basic density 
measure. 

1. INTRODUCTION 

In the last  few decades  m u c h  theore t i ca l  r esearch  has  been  devo t ed  to the 

p r o b l e m  of  phase  t ransi t ions ,  and  power fu l  new m e t h o d s  have  been 
deve loped .  It-41 H o w e v e r ,  the p r o b l e m  remains  of  cons t ruc t i ng  a t heo ry  

which  a l lows  wi th in  a unif ied a p p r o a c h  a c o m p l e t e  desc r ip t ion  o f  the  

phase  b e h a v i o r  Q,f u l t i c o m p o n e n t  c o n t i n u o u s  sys tems beg inn ing  wi th  the  
H a m i l t o n i a n  and  end ing  wi th  the t h e r m o d y n a m i c  funct ions  in the  ne igh-  

b o r h o o d  of  the  phase  t r ans i t ion  point .  
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In this paper we propose a new approach to the study of phase 
instability in multicomponent fluids depending on the microscopic inter- 
action between particles. It enables us to obtain both universal and non- 
universal quantities. This approach is based on the method of collective 
variables (CV) with a distinguished reference system (RS). Using this 
method, we study the thermodynamic properties of a binary fluid in the 
vicinity of the separation critical point. The present paper is devoted to the 
first part of the investigation, namely, the derivation of the functional 
of the grand partition function for an m-component continuous system, its 
investigation in the Gaussian approximation for m--2 ,  and the construc- 
tion of the fourfold basic density measure for a binary symmetrical mixture 
in the vicinity of a gas-gas separation critical point. 

The method of collective variables was developed in ref. 5 and it 
appears to be useful for the consideration of problems connected with 
phase transitions. The point is that the statistical description of the phase 
transition process is to be performed in the appropriate phase space specific 
for a certain physical model. Among the independent variables of this space 
there must be the ones connected with order parameters. This phase space 
forms a set of CV. Each of them is a mode of density fluctuations corre- 
sponding to the specifics of the model under consideration. In particular, 
for a magnetic system the CV are variables connected with spin density 
fluctuation modes, for a one-component fluid, with particle density fluctua- 
tion modes. What is the content of the CV for a multicomponent system? 
We answer this question below. 

The CV method allows us to determine the explicit form of Ginsburg- 
Landau-Wilson Hamiltonian and then to integrate the partition function 
in the neighborhood of the phase transition point taking into account the 
renormalization group symmetry/6~ 

The use of the CV method for the solution of certain physical tasks in 
refs. 5 and 6 and other work was limited to the canonical ensemble (CE). 
But for the description of processes relating to a phase separation in a 
multicomponent system in which composition fluctuations play the decisive 
part (for example, the gas-gas or liquid-liquid phase equilibria for the case 
of the binary system) the grand canonical ensemble (GCE) should be used. 
On the other hand, the task of the development of the CV method for the 
case of the GCE raises the problem of selecting the CV phase space which 
includes the variable connected with the order parameter. Therefore it is 
necessary to introduce the GCE in the CV method in the case of the gas- 
liquid critical point. 17~ 

The layout of this paper is as follows. The main aspects of the CV 
method with a reference system for a multicomponent system in the GCE 
are clarified in Section 2. In the process of calculation of the partition 
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function integral it is an important task to find the Jacobian of the trans- 
ition to CV, which is expressed as the cumulant (semiinvariant) expansion 
into a series. It is shown that the nth cumulant is expressed in terms of 
Sy , . . . y , (k~  ..... k , , ) ,  the nth structure factor of the RS. For the latter in the 
limit ki = 0 one can obtain thermodynamic relations. As a result, the expo- 
nent of the functional integral of the grand partition function gives the free 
energy density of the system defined in the CV phase space. This energy has 
the form of an infinite series in powers of CV. The coefficients of this 
expansion are known. They are expressed in terms of the Fourier trans- 
forms of the initial attractive potentials and thermodynamic functions of 
the RS. As was already shown, tS~ in the vicinity of the critical point a basic 
density measure exists which includes higher powers of CV, including the 
fourth. Our aim is to integrate the functional of the partition function of 
the binary continuous system with a basic fourfold density measure in the 
neighborhood of the separation critical point. In order to find the form of 
CV connected with the phase transition and to understand the mechanism 
of the phenomena which take place in the binary mixture we first consider 
simpler calculations based on the use of the Gaussian density measure in 
Section 3. In Section 4 we construct the fourfold density measure with 
respect to CV, which include a variable corresponding to the order 
parameter for the separation phase transition. A brief summary and conclu- 
sions paper follow in Section 5. 

2. THE METHOD 

Let us consider a classical multicomponent system of interacting 
particles consisting of N~, particles of species a~, Na., particles of species 
a 2 . . . . .  and Na., particles of species a.,. The system is in a volume V at 
temperature T. 

Let us assume that the interaction in the system has pairwise additive 
character. The interaction potential between a y particle at ri and a 6 
particle at rj may be expressed as a sum of two terms: 

u.Aro.) = ~,~(r , j )  + r  

where ~z( r )  is the potential of short-range repulsion, which is chosen as 
the interaction between two hard spheres trry and aza: 

{c~, r < a ~  (2.1) 
~ ( r )  = O, r t> a~  

822/81/3-4-8 
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Fig. I. The Fourier transform $(k)/1~5(0) j of the attractive potential r where ~r~(r)= 0 
if r < at, s and ~#(r) = -ey~{exp[ - 2(r -- R~.~)/%a] - 2 exp[ - ( r  - Rr,~)/%,~ ] } if r >>. at, ~. 

$~,~(r) is the potential  describing an at t ract ion at long distances, q~y~(r) has 
the form of  a potential  well and is negative at large distances r. The 
behavior  of  Sr6(r) in the region of the core r < ay6 must  be determined from 
the conditions of  opt imal  separat ion of the interaction. The Fourier  trans- 
form tb~,6(k) is negative for small values of  k, min t~r~(k)= ~y6(k = 0 ) <  0 
and limk ~ ~ ~ (k )  = 0. For  a very broad class of  potentials the general form 
of $y6(k) is presented in Fig. I. 

We shall consider the grand part i t ion function of an m-componen t  
system 

[ z~' t]  f e - /wI l t  (dF) ,  
{~v} >/o , 

? = a l ,  a2 ..... a m  (2.2) 

The following notat ions are introduced here: 

F, = F, . . .  Y. ; (dr')  = I-I dFuy 
{g} />0 g a 1 2  0 gam ~ O )' 

dl"N. ~ is an element of  configurational space of the yth species: d F u ,  = 
dr~ d r z . . . d r N , ;  z~, is the activity of  the yth species: zr=exp(f l l~ 'r) ,  / t ' r=  
lt~, + f l -  I ln [ ( 2 r tmy f l -  ] )3/2/h3]; fl is the reciprocal temperature ,  fl = ( k T)  - l ; 
m~, is the mass of  the yth species; h is the Planck constant;  and 

U{N} =UNo,...No,,, 
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is the potential energy of an m-component system of N interacting particles 
with N~ particles of the a~th species, N,2 particles of the a2th species, 
etc.: 

U{N} = ~f~} + r (2.3a) 

~{N} = / Z Z ~bra(ru) (2.3b) 
},,6 0" 

qS{m = �89 Z E <k,,a(ro') (2.3c) 
y.t~ ij 

The phase transition is an equilibrium process. Therefore we obtain 
detailed information by calculating the grand partition function 
3( T, V, Pat ..... Pa,,,), (2.2). The chemical potentials are determined from 

din  
! dfl#~, <N~,> (2.4) 

where (Ny)  is the average number of the y-species, which may be equal to 
the given number of Ny particles from the experimental conditions. 

We find the equation of state of the system from the relation 
P V = k T l n 3  and from Eq. (2.4). Having solved Eq. (2.4), it is possible to 
find the free energy of a multicomponent system with the help of the 
standard expression 

F =  - f l -~  In Z +  Z p;,(Ny) 
Y 

The correlation effects of different scales are connected with the potentials 
@r~(r) and ffy~(r): the potential @r~(r) describes the behavior of the particles 
at very short distances and provides their mutual impenetrability. The 
potential ~by~(r), on the contrary, describes mainly an attraction between 
particles which takes place at long distances. These effects: are proportional 
to different parameters. In order to investigate them simultaneously, it is 
necessary to perform the considerations suceessivel~ in two phase spaces. 
First we write the grand partition function and the correlation functions of 
the RS in the phase space of Cartesian coordinates. A model m-component 
system of additive hard spheres will be taken as the RS. Here the pair inter- 
action will be described by the potential @y~(r). Then the grand partition 
function of the initial system will be constructed in the collective variables 
space by means of the RS functions. The phase space overflow will be can- 
celed by introduction of the transition Jacobian. 
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Let us introduce in (1.2) the RS and the grand partition function 3 0 
corresponding to it: 

[ exp(fllt~Ny)] 
3'o= ~. ,,1--[[ N~,! j f (dF) exp(-f ld/{Ni) (2.5) 

{N) >/o , 

Here %., is the activity of the yth species of the RS; for chemical potentials 
/zo. ~ we have the condition 

dln 3 o 
dfltxg = (N~,) o (2.6) 

where (N~)o are the given values. 
Now we rewrite the attractive potential (2.3c) in Fourier space 

= I Y'. Y'. 1 ~,,,~(k)[.O~v~(k) .ONe(--k) -- N,,cS,,a] (2.7) 
2 ~,~ k 

where ~,a(k) is the Fourier transform of ~,a(r), namely 

~y~(k) = f d r~  ~( rya )  exp(ikr,,~), ry~ = r~' - r~ 

6ya is the Kronecker symbol; 

N7 

/~N~(k) = ~ exp(--ikr~') 
i = 1  

Let us introduce CV p~,.~,, p[,.y, and Po.~, by means of the relations 

where 

,3~5(k ) = f p~,.,,~i(p~,.,,-,3~v~(k)) dp~k.,, 

,3 ~v~(k) = f p~,.~,6(p~,.y- ,3 ~v~(k) ) dp~,.,, 

N~, = f pofi(p o - N~,) dpo 

N 7 

/5~v~(k) = ~ cos(kr~'), 
i = 1  

6(.. .)  is the Dirac delta function. 

N? 

p~v~(k) = y '  sin(kr~') 
i = 1  

(2.8) 

(2.9b) 

(2.9c) 

(2.10) 

(2.9a) 
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In contrast to the CE, we have introduced the CV Po.r, connected with 
the number of particles of the yth species. 

According to (2.10), let us assume also that 

c _ _  c s _ _  $ 

Pk.~- -P-k ,y ,  ,Ok.v-- --P--k.y 

Let us distinguish in (2.2) the grand partition function of the RS 3o 
and represent S in the form ~ = ~ ' o " , .  Then, taking into account 
(2.7)-(2.9), one can write 3 ,  in the form of the functional integral 

S~=  exp fl~.p~po, y - ~ .  ~OC,a(k) pk.,p_k, a J(p)(dp)  (2.11) 
7 ) ' ,J  k 

The following notations are introduced here: ~ra(k)=fl/V~r~(k), and 
(dp) is the volume element of the CV phase space 

(dp) = 1-] dp,,.y I-]' dp~,,y dp~.r 
), k ~ O  

The prime means that the product over k is performed in the upper 
semispace (it follows from Pk.r = P~,,y -- ip~,,y and p -k.y = P~.~ + ip~.~, that 
p~,,r and p~,.~, for positive values of k are independent variables), p~ is the 
additional chemical potential of the yth species: 

p~ ' y = ~ - Z o  + ~ Y. %,(k) 
k 

As chemical potentials/x~ in (1.I1) are considered to be known, then the 
additional chemical potentials/x~ are determined from 

d in  S t 
dflp~" - ( N~,) 

is the transition Jacobian J(p) = J(p~,,, p,,., ..... p,,.,) 
averaged on the RS: 

j ( p ) =  r - I  
~ 0  

(2.12) 

to the CV which is 

~ [ N,,! j f (dl")exp(--fl~,N,) 
{N} />0 

x I-[ J (Po .y -  N~,) 
7 

x I-[ '  ~(Pk.y--/~N,(k))  
k 

(2.13) 
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The determination of the transition Jacobian J(p) is a very important 
task in the calculation of the functional integral 3] .  Here we calculate it for 
the GCE for the first time. 

Substituting into (2.13) the explicit terms for delta functions, we get 

J(P)=fJ(v)YIexp(iXrc~k vk.rPk.r)(dv' 
Y 

where the variables vk.y are conjugate to the CV Pk.r: 

_ _ 2  c s 
Vk, y - - ~ ( V k , 7 ~ - V k ,  7),  if k ~ 0  

(d~) = FI aVo., I-I ark,,, dv L 
7 \ k : ~ O  

J(v) is the Fourier transform of the transition Jacobian J(p), which 
is analogous to the transition function appearing in the Hubbard-  
Stratonovich representation (s) 

_ivy LNy!J[ ~,,.'o] f (dF) exp(-fl~{ul) J(v) =Zy '  y~ I-I 
{Jr} >/o 

x l-I exp [ --i2rc ~ Vk.,,~N./(k)l (2.14) 
), k 

Performing in (2.14) integration over the phase space of Cartesian 
coordinates of the particles and summing over { N}, we may represent J(p) 
in the form 

J(P)=f(dv)expli2n~. EVk, rPk, v + E D,,(v)] 
y k n > ~ l  

(2.15) 

where 

D,,(v) = ( - i2n)" n ~  E E -/gy,...r.( k, ..... k,,) 
}'l ,..., }~n k l  ,..., kn  

X ] ) k l , } , l  V k 2 , y 2  �9 �9 �9 Vkn,yn" ~ Yi = a~, a 2 ..... a., (2.16) 

Here ~ , . . . y . (k l  ..... k,) is the nth cumulant, which is determined from the 
relation 

~r ,  ... r,(kl, -.-, k,,) 

_ a"lnJ(v) 
dvk,.r, dVk2.72 " " " d V k , . 7 ,  %.'t~ = o 

(2.17) 
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The cumulants M/yl ... v.(k~ ..... kn) are expressed as the sum of Fourier trans- 
forms of correlation functions hy, n(k I, k2) and hyt...r.(k, ..... k.)  and with 
the help of 

J/y, ...~,~(k, ..... k.)  = (<Nv,> .. �9 <Nv.>)*/" Sr,...},~(k, ..... k,,) 

X ~kl + ... + k." 

are connected with the n-particle partial structure factors Sy,....,(kl ..... k,,). 
In particular, in the case of a one-component system of N particles the first 
four cumulants have the form 

�9 //-t't(kt) = <N> ~kt 
�9 -~2(k~, k2) = 6k,+k,<N> [ 1 + (<N>/V) h2(k2)l 

..#3(k ~ ..... k3) -- ~k,+k2+k3<N) [ 1 + 3(<N)/IO h2(k3) 

+ (<N>2/V 2) h3(k2, k3)] 

�9 //t'4(k i . . . . .  k4) = 6k, +... + k4<N> [ 1 + 4(<N>/V) h2(k4) 

+ 3(<N>/V) h2(kl +k2)  +6(<N>2/V 2) h3(k3, k4) 

+ (<N>3/V 3) ~/4(k2, k3,  k 4 ) ]  

It is known that near the critical point the density fluctuations increase 
and the correlation radius becomes infinite. From this point of view the 
limit ki---' 0 in the cumulants is especially important. From (2.17), taking 
into account (2.8), we obtain for the first four cumulants 

~g~,(0) = <N~,> 

dgy, ~,2(0, 0) = ( (N~, -- ( N),, ) )( Ny_, - ( Ny 2 ) ) ) 

X/r, r2 y,(0, 0, 0) = < (Nr, -- < N,,, > ) (Nr: -- < Ny, > )(Ny 3 -- < N .  > ) > 

~g~,ty2.y4(0, 0, 0, 0 ) =  < (N~ , -  <Ny, >)(Nv_,- < N ~ > ) ( N . -  < N . > )  (2.18) 

x (Ny4-- < N ~ , > ) -  ~ <(Ny,-<Ny,>) 
0:-.3.,] 

i.].t.p=~t.3.2.47 
~. 1,4.2,3) 

x (N~- <N~>)>< (Ny,-- <Ny,>)(Nr - <Nr,>)> 

Formulas (2.18) are useful from the point of view of possible numerical 
experiments. However, there also exists another way of calculating 
~ ,  ...~o(0 ..... 0). 
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It follows from (2.13) and (2.17) that the Nth cumulant at k = 0  can 
be found from 

~ . . . . ~ . (0  ..... o ) =  fl" In d(v) 
dvo.v, dvo.._ . �9 �9 dvo.r. ~k,.~=o 

=F d'-l<N">-- l 

Then the second cumulant has the form 

_ [ d(Ny,)  ] (2.19) 
~G~:(o,  o) - L df lM 2 J v,T,~, 

Using the algebra of matrices, for .///~,,v2(O, O) we obtain 

Jgvw2( O, O ) = f l - I B y , , , J d e t  B 

where B is a square (m x m) matrix, the elements of which are 

br, r2 = (dlXYo'/d( Ny2)  ) v,r,N~, 

Brn, 2 is the algebraic adjunct of the element bytv 2 of the matrix B. Higher 
order cumulants can be obtained with the help of the recurrence formula 

de:,, .~.(0 ..... O)=I  d..g/y,...~._,(O ..... 0)] (2.20) 
" dfl l~" v, r. 04~} 

The relations (2.19)-(2.20) allow us to express cumulants at k~ = 
k 2 . . . . .  k,  = 0 through the thermodynamic functions of the RS. 

Let us consider now the determination of cumulants d,/yt...y, in for- 
mulas (2.11 ) and (2.14 )-(2.15). In general the cumulants J/yt ... ~, depend in 
a complicated way on kv The essential contribution to the partition 
function comes from cumulants with wave vectors k,. corresponding to the 
attraction range of the potential #~6(r). For one-component system this 
is the range Ik*l~[0, k], where for all Iki l>k* the inequality 
1 / , . g 2 ( k ) > l ~ ( k ) l  holds [ ~ , / 6 ( k ) = N S ( k ) ,  where S ( k )  is the structure 
factor, ~(k) is the Fourier transform of the attractive potential]; for an 
m-component system the range [0, k*] is determined separately for each 
particular m from the condition of negativity of the coefficient at a second 
power of CV (connected with an order parameter) in the functional 
Hamiltonian. As was already shown (9) for a one-component system in the 
range k e  [0, k*] the dependence of cumulants on ki is very weak and it 
can be approximated by a parabola. The same conclusion follows from 
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results obtained by Ashcroft and Langreth (1~ for two-particle structure fac- 
tors of the binary additive hard-sphere system. Hence in zeroth approxima- 
tion constant values d/y, ... y~ 0) can be substituted for J/yr... y,(k, ..... k,,) 
and in the first approximation the dependence on k of cumulants on the 
binary correlation functions hyEn(k~, k2) can be taken into account. As a 
result the functional of the grand partition function can be written as 

I f 1 Z = Z  o (dp)(dv)exp flZ/t:i'po, r - ~  ~ocy, r,.(k) 
7 Yl ,T2 k 

Xpk, y,P-k.y2+i2~z~ ~ Vk.yPk.y 
~, k 

( --i2n)" 
+ E E E o) 

n ~> 1 71 " " " Y. k l  ' " �9 k n  

+ O(k2)] Vk,.~,"" Vk,,Jk,+ ... +k,} (2.21) 

where in the exponent the coefficients of the l,'k,y and PLy variables are 
known. 

We propose the following program of investigation: (1) to separate 
under the integral in (2.21) the phase space of CV Pk.y* (and corre- 
spondingly v~.~), which includes the order parameter; (2) to integrate over 
CV Pk, r (and vk.y ) which remain, using the Gaussian density measure as the 
basic one; (3) as a result of the integration performed in 2, to obtain the 
fourfold density measure with respect to the variables Pk.r* and Vk, y.* Having 
performed this program, the problem of the phase transition in a multi- 
component system can lead to an Ising-like problem for which a method 
of solution was proposed in ref. 6. 

3. PHASE T R A N S I T I O N S  IN B I N A R Y  S Y S T E M S .  
THE PHASE SPACE CHOICE 

Let us consider a two-component continuous system of particles 
among which there exist Na particles of species a and Nb particles of species b. 
A gas-liquid phase transition and a separation phase transition in both gas 
and liquid phases can occur in such a system. In order to understand the 
mechanism of realization of these phase instabilities in the binary fluid 
we shall perform first the simpler calculations based on the Gaussian 
density measure. This truncation generates the well-known random-phase- 
approximation (RPA) contribution to the free energy. We let n = 2  and 
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Yl, Y2 ..... y,,=a, b in formulas (2.5), (2.11), and (2.15)-(2.16). As a result of 
the integration in (2.15) over variables vk. . and vk. b, 3~ may be written as 

S , = Y , ? = � 8 9  ( d p ) e x p [ - H ( O ) +  Y'. M,.po., 
k y=a.b 

-- �89 Z Z a,, a(k) Pk.rP-k.a] (3.1) 
k y,o r J 

Here we introduced the following notations: J / (k)  is (2 x 2) symmetrical 
matrix, the elements of which are cumulants #t~,a(k): 

~r = (N~,)[~,,~ + (Na)/Vh,,a(k)] 

= ( (Nv) (Na) ) ' /2  S~,a(k) (3.2) 

g(0)  = �89 ~ (Nv) (Na)  [ J/C'-~(0)]~,a (3.3) 

M,,=flp~' + ~ (Na)[ . l / / - ' (0 ) ] ra  (3.4) 

a~,~ = %,~(k) + [ ~ / -  l(k)]~,~ (3.5) 

[Jg-~(k)]~,a is an element of an inverse matrix. 
As proposed in ref. 11, we separate the CV phase space which includes 

the variable connected with the order parameter by diagonalizing the 
square form under the integral in (3.1). As a result of the orthogonal trans- 
formation 

Pk,~ ' =  E Ayi~k. i '  y = a , b  (3.6) 
i=1.2 

for the square form we have 

- �89 ~ el(k) ~k.i~-k., (3.7) 
i,k 

where 

1 e,,2 = ~_ {a.a + abb +_- [(aa. --abb) "- + 4a]b) ] 1/2 } (3.8) 

(the + and -- signscorrespond to indices 1 and 2). The explicit forms for 
At,; are given in Appendix A. 

In the case of a binary mixture of particles of different sizes 
(~ = a~,/abb r 1) interacting through different attractive potentials 
[ ~bu.,(r):~ ~bbb(r):~ ~b.b(r) ] the dependences of values A;,i(k). el(k), and e2(k) 
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on RS characteristics and on the Fourier  transforms ~o(k) are com- 
plicated. Therefore to study the possibility of the realization of gas-liquid 
and separation phase transitions and their order  of priority we shall 
consider the simplest case, namely a symmetrical mixture. A symmetrical 
mixture is a model system of equal-size particles (0r = 1 ) interacting via the 
same attractive potentials between "like" particles [~b,,,(r) = ~bbb(r ) = ~b(r)] 
and via different attractive potentials between "unlike" particles [~b(r)4: 
(bah(r)]. Although the symmetrical mixture represents a simple model of a 
real binary fluid, it exhibits all three types of two-phase equilibrium which 
are observed in such a system. The critical curves of this mixture are sym- 
metrical with respect to the concentrat ion x = 1/2 and exhibit an extreme 
at this point. The concentrat ion x = 1/2 is a critical one for the symmetrical 
mixture. At Xo = I/2, ~ = 1, ~ 5  = ~bb = qS; from the equations e~(0) = 0 and 
e2 (0 )=0  we get the critical temperatures in the RPA (or mean-field 
approximation):  

where 

cO s~ ~(0) < 0 
- -  c . - -  c ' O - O ~ ( . ~ c ) -  g-I 

t0,, ,  ~(0) > 0 
_ f o~", ~ ( o )  < o 

o = o~(xc) - ~o~p, ~ ( o )  > o 

O;=kT; 

( 3 . 9 a )  

(3.9b) 

0~4= - - (p /2 ) [~ (0 )  + &~b(0)] S+(0)  (3.10a) 

0s~p _ - ( p / 2 ) [  ~(0)  - t~b(0) ] S_(0)  (3.10b) 
C - -  

_.<e(o) = ~odo) s(0) + ~(o) sob(0) (3.1 l) 

Here p is the density of  the full system, and S+(0)  and S_(0)  are the 
density-density and concentra t ion-concentra t ion structure factors, 
respectively, of an equal-diameter hard-sphere mixture at k = 0. At x = I/2, 
S+(0)  and S_(0 )  have the form 

s+(0)  = s(0) + s,,b(o) 

S_(0)  = S(0) - Sub(0) = 1 

where S(O)=Sad(O)=Sbb(O); S+(0)  is the structure factor of the one- 
component  RS. 

Coefficients (3.6) are reduced and the CV ~k,; become equal to 

Ck,,=ICk, a,2(k) > 0  ~Pk, a , , (k)  > 0  (3.12) 
(Pk,  al2(k) < 0'  ~k,~ = - (C  k, a l z ( k )  < 0 
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where 

Pk=(1/~//2)(Pu,,, + Pk, b), Ck=(1/.,/~)(Pk,~--Pk, b) 

atz(k) = c%b(k) -- 2S~b(k)/(NS+(k)) 
(3.13) 

The new variables Pk and c k are connected with total density fluctua- 
tion modes and relative density (or concentration) fluctuation modes in 
the binary system. The diagonal square form (3.7)-(3.8) transforms as 
[independent of the sign of atz(k)] 

- �89  ~, { E(oc(k) - o%b(k) + 1/N] CkC_k 
k 

+ [(oc(k) +o%b(k ) + 1/NS+(O)] PuP k} 

It follows from (3.9)-(3.13) in the case of a symmetrical mixture that 
there exist two critical branches c~(0) and ~2(0) and accordingly two sub- 
spaces of CV ck and Pk which include variables Co and Po connected with 
the order parameters. 

Let us consider the critical temperatures. Expressions (3.9)-(3.10) 
contain the quantities r  ~,b and ~ + ~ b .  There are two possible cases: 
(a) [r > [r [ and (b) 1~1 < [(b,b I. In case (a) the attractive energy 
between "like" particles is stronger than that between "unlike" particles. 
Separation of components can occur in the system. In case (b) the attrac- 
tive interaction between "unlike" particles is stronger than that between 
"like" particles and this is a condition of the existence of the mixture. In 
Fig. 2 critical temperatures 0~(i/) (curve 1) and 0~(q) (curve 2) are plotted 
vs. packing fraction q at r=0.5.  Here O~(rl)=O~.ll/p 1~(0)1 is the dimen- 
sionless temperature, q=r~/6pa 3, p=N/V,  N=Na+Nb,  and r is the 
dimensionless "unlike" interaction strength: r =  --q3,b(0)/lr [the form 
of cko.(r) is not specified]. The curve of the gas-liquid equilibrium (r = 1.2) 
is shown by the dashed line in Fig. 2 and has the same form as the corre- 
sponding curve in the one-component case. Both the curve 0 = 0~(r/) and the 
curve 0 = O~_(J7) are composed of two branches meeting at q* = r/crosdr ). The 
different slopes of the two branches can be interpreted as an indication of 
some difference in the physics of the transition undergone by the mixture. 
Indeed, it is clear from formulas (3.9) that for q <q*  the curve 0 =  0~(q) is 
the line of the liquid-liquid phase equilibrium and for ~? > r/* is the line of 
the gas-liquid phase equilibrium. On the contrary, the curve 0=0g(q)  is 
the gas-liquid phase equilibrium line for q < q* and is the gas-gas phase 
equilibrium line for q > q*. The curves 0~(r/) and 0~_(r/) have one common 
point, for which the gas-liquid and the separation critical points coincide. 
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O.t@ 

O.N 

T 

~ N  
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&O & f I1~ &ll 0.4 

Fig. 2. Dependence of critical temperatures of the symmetrical mixture on the packing 
fraction; r=0 .5  (solid curves) and r =  1.2 (dashed curve). 

The density r/* corresponding to this point is determined from the 
condition 

0'](q*) = 0~(r/*) (3.14) 

or from the equation s 
Now let us consider in Fig. 2 the line formed from the branch O~(t/) for 

~1 <r/* and from the branch ~)~(Jl) for q > q *  and compare it with the 
dashed curve. These curves have the same form. The two remaining parts 
of 0~(17) and 0~(q) form a straight line. Hence for the symmetrical mixture 
one can separate exactly the gas-liquid and the separation (demixing) 
critical temperature lines. The existence of the point ii* for which (3.14) 
holds is connected with the simplicity of the model under consideration. 
On the other hand, the existence of a point on the critical curve at which 
the gas-liquid and the gas-gas separation critical temperatures coincide 
was confirmed experimentally. It is the so-called critical double point/''-) 

The phase diagram of the symmetrical mixture is shown on Fig. 3. 
Depending on the relationships between microscopic values ~(0), ~,,b(0), 
and S+(0), three.possible phase ranges can exist: (1) gas-gas separation 
and gas-liquid phase transitions; (2) gas-liquid and liquid-liquid phase 
transitions; (3) only gas-liquid phase transition. 

Hence in the case of the binary symmetrical mixture we can make the 
following conclusions: (1) as a result of the square form diagonalization in 
(3.1) two CV subspaces were separated: the first with the order parameter 
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+ 

4- 
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Fig. 3. Three phase regions of the symmetrical mixture depending on the microscopic 
parameters: (1) gas-gas and gas-liquid phase transitions; (2) gas-liquid and liquid-liquid 
phase transitions; (3) gas-liquid phase transition. 

and with the critical temperature 0~ -t, and the second with the other order 
parameter and with the critical temperature o sep" (2) since the CV describing v c 

phase transitions are the variables ,o k and Ck, the variable Po describes the 
long-wavelength fluctuation mode of the total particle number N--  N~ + Nb 
(or total density) and connects with the order parameter whose nonzero 
value arises below the gas-liquid critical point, and the variable Co describes 
the long-wavelength fluctuation mode of the relative particle number 
N ~ -  Nb (or relative density) and is connected with the order parameter for 
the separation phase transition. The order of priority of the gas-liquid and 
the separation phase transitions depends on the microscopic properties of 
the system. 

The purpose of our further study is the calculation of thermodynamic 
functions in the vicinity of the gas-gas separation phase transition point. 
We shall follow the program drawn in Section 2, namely: (1) having con- 
verted from CV Pk.,, and Pk.b to CV Pk and Ck in (2.21), we shall integrate 
over variables Pk with the Gaussian density measure; (2) then we shall 
construct the fourfold basic density measure with respect to variables Ck; 
(3) using a method proposed in ref. 6, we shall integrate the partition 
function in the vicinity of the gas-gas phase transition point (at T>~ T,. and 
T~< To). We perform the first two steps of this program in the next section. 

4. BASIC DENSITY MEASURE IN THE VICINITY OF 
GAS-GAS SEPARATION CRITICAL POINT 

We let 7~, Y2 ..... ?,, =a ,  b in (2.21) and pass to CV Pk and Ck by means 
of formulas (3.11 )-(3.12). Then we obtain 
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Z = 3 o  f ( d p ) ( d c )  exp {f ig ~-Po + fig?Co 

- (f i/2) ~ E r PkP -k + 20~(k) 
k 

X p k  c - - k  "1- f f ~ - ( k )  CkC--k] } J(P, c) ( 4 . 1  ) 

where the following notations are introduced: 

g~- = 2-'/2(g~ +g~); g l  = 2- l /2 (g~-g~)  (4.2) 

T'(k) = (fi-'/2)[%,,(k) + %b(k) + 2%b(k)] 

~ (k)  = (fi- 1/2)[ %,(k) - 0%(k)] (4.3) 

~ ' (k )  = (,8-'/2)[%,,(k) + %b(k) -- 2%o(k) ] 

d ( p , c ' = f ( d T ' ( d o 9 ) { i 2 ~ ( o 9 k P k + , k C k ) +  ~. ~ D',]"'(,,O9)} (4.4) 
n>~l i>~O 

COk=2--1/2(Vk, a+Vk.b) , ~k=2--l/2(Vk, a--Vk, b) 

hl]")(y, o9)= [(--i2zr)"/n! ](2'/2/2) '' ~ ~..,,,///(i"~m,v,..., 0) 
kl �9 ' - kn 

x 5ka + ... + k.Yk, " "  Yk~,,O9%§ "''ogk. (4.5) 

The index i,, is used to indicate the number of variables 7k in the 
cumulant expression (4.5). Cumulants j#c,],~ are expressed as linear com- 
binations of initial cumulants J~.,...~,, and for ),( ..... ~,,,=a, b and n~<4 are 
represented in Appendix B. 

Equations (1.12) can be rewritten in the form 

din ~,/dfig;- = (N, , )  + (Nb)  = ( N )  (4.6a) 

d In F_~l/dfig I = ( N,, ) -- (Nb)  (4.6b) 

In the case of the binary symmetrical mixture 

4/(k) = 0 (4.7a) 

Jf/,,,,( k ) = .#/bb( k ) (4.7b) 

and the square form under the integral (4.1) is diagonal. In this case the 
index i,, takes only even values (see Appendix B). The nth cumulant Ja""),, 
with i, = 0 is connected with the nth structure factor of the one-component 
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hard-sphere system: ___./gl~ - S , .  Cumulants with i,,q:0 can be 
expressed in terms of ,A'I, ~ as follows: 

./gc21 [n!/2! ( n - 2 ) ! ]  ~,~ol 

jg,,4) [n!/4! (n 4)!](3J/r176 z ,0, = -- _ -- 2J[ , ,_ 3) (4.8) 

./g,6) [,7!/6! (77 6)!](15~t'r176176 16Jgl~ 

For simplicity of calculation and without loss of completeness let us 
further assume that ~ra(k)=  0 at Ikl > k* (see Fig. 1 ). Then integrating in 
(4.1) over Pk and Ck with Ikl > k *  leads to 0-functions. As a result for the 
transition Jacobian we obtain an expression which has only one difference 
in comparison with the old one, namely, all the sums over k are carried out 
in a sphere of radius k*. The quantity k* determines the sizes of the 
Brillouin half-zones of a crystal lattice corresponding to the given system. 
Here a new periodic function should be introduced in place of ~r~(k): 

~y~(k) = y' ~'y,~(k + 2k'n) 
n 

We multiply both sides of this equality by exp(ikr) and sum over all k with 
k < k * :  

(l/V) ~ ~r~(k)exp(ikr) 
k < k *  

~" ~ , ( 1 / V ) - '  = ~y~(k + 2k 'n)  exp(ikr) 
k < k *  ,,i 

Let it be required that the right-hand side is a complete Fourier transform, 
which is possible when 2nrk* is a multiple of 2n. Thus, r =  mc, where 
m = m.,.i + myj + m_.k; m:,., m y ,  m~ are integers, i, j, k are unit basic vectors, 
and c is the size of the period of the simple cubic lattice. The number N* 
of collective variables is determined by 

N *  = V/c  3 = V( k*  /~z) 3 = ( N ) ( k * )  3 tr3/6n2pl 

In general, the quantity k* depends both on the form of the attractive 
potential Sy6(r) and the diameter a as well as on the average density 
and the temperature of the system. In the case when ~.6(r) is the Morse 
potential 

~b;,a = --era { exp[ - 2(r -- Rra)/o~r~ ] -- 2 exp[ --  (r --  Rra)/o~;,~] } 
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we have that 

k* = 0c~ I [4 - exp(Rya/~ya) ] 1/2 [exp(Rrd%6 ) _ 1 ] -1/2 

Here exp(Ry~/%a) < 4. 
After the integration over Pk a n d  Ck with [kl > k *  their number 

reduces to N*. As a result, the partition function (4.1) can be rewritten as 

Cx. 

- (fl/2) ~ [ ~ ( k )  P k P - k  + ~ ' (k )  CkC_k] } J(P, c) 
k < k *  

(4.9) 

(in)' In (4.9) the new cumulants r differ from the previous ones by multipliers 

~'")'  = ~'l,i") ( N* ) / ( N )  

We shall calculate the partition function (4.9) in the vicinity of the 
gas-gas separation phase transition point. According to results of the 
previous section, the inequality 0~eP>> 0 g'~ holds. It follows from (3.9)-(3.10) 
that we have the following relations between microscopic parameters of the 
binary system in this case: 

~ ( k )  < O, IgP(k)l > I ~ ~  (4.10) 

The region 1 in Fig. 3 corresponds to these conditions. The CV Pk do not 
include the variable connected with the order parameter for the separation 
phase transition. Thus we integrate over Pk with the Gaussian density 
measure. Let us eliminate the linear term in the exponent in (4.4) by a shift 
Pk = P k -  ( N )  Jk21/2/2 and present DI, '"~ in (4.4) as a sum of two terms 

where 

(in) __ tin)' (in)" D,  - D,, + D,  

D,(/")" -- D (~ (o9) _ _ , , +  Dli")(m,_, ~), D~/")" = D~i~ 

(&) Here D~~ includes only products of variables co k, D,  (o9, ?) includes 
mixed products of both variables ogk and ?k, and Dt,;")(y) includes only 
products of variables Yk. Let us consider the integral 

822/81/3-4-9 
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I = f (do) (do)) exp[flfi + < N* > -- fl( < N* > 2/4)/7"(0)] 

xexp{ - f l  ~ iT'(k) PkP_k+R(O)+(--i2n)2/2' 
k<~k* 

M k ~< k .  ~(20)(-Ok (O _ k  } ( 1 " ~ -  .,*4 2 "~- l ~12 "J- " " " ) 

k < k *  

where the following notation is introduced 

fi~- =2-'/5,~ , R(O) =tiff+ -2-'/2fl(<N*)/V) "17"(0) 

.A., Z - -  nD(i")' 
n>~3 

[in (4.11 ) the prime on ,O k and ,,u,,~ is omitted for clarity]. If in A2 the ~/g/g" n 
operator d/dpk is substituted for i2grOk, (4.11) can be rewritten as 

I=S~(1  + (Az) +~<A_~> + . . .)  

where 

n 
k < k *  

k < k *  

I PkP-k'~ (4.12) x ...exp - 5  2 .#/~, ] 
k < k *  

3,~ = exp [ pfi~- fl< N* > 2 ~r  V l'-Ik. [P~'(k) J#~~ 
k <  

I R21~ xexp [ 2Vii(O)] (4.13) 

Vl,(k) =f l#(k)  + 1/,/#~' (4.14) 

Finally after the integration over variables Pk we obtain 

~ = S o ~  f (da) ̂ '' exp [fip~-Co-(fl/2) ~, i'//'(k)CkC_k] J(c) (4.15) 
k < k *  
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where J(c)  has the form 

J(c)= f (dy) N" exp f {i2n ~ ykC~ + ( - i2n)-~"/2n! 
k < k *  n ~  I 

• 2 - "  ~,, t#12,,~ t (4.16) v/l / t  2,, § Z~"//r 7 k l  " ' "  7k ,~ ,~kl  + . - .  + k2,, 
k i < k *  ) 

Here the values J~'~*-"~ ~, 2,, are determined from (4.9) and A J4,, are corrections 
obtained as a result of the integration over Pk. 

Let us now go through the assumptions that led us to the initial work- 
ing formula. To investigate the qualitative picture of the events taking place 
at the critical point itself and in a small neighborhood of it we confine our- 
selves to fourth-degree polynomials in the expressions for In J(c), ~6~ setting 

.//r _ n 2, - "  and A./#2,, = 0 for n>~3 in (4.15). 
It follows from (4.8) and (B.1) that 

~ / 7 ) =  ( N * )  (4.17a) 

,//r = 3,/g ~_o ) -  2( N* ) (4.17b) 

Corrections A J 2  and A~ff 4 are determined from 

A~,_ = -(1/12) ...]//(2)/4 /--o////(~ ." (1/5!) ./~t6z)/(,//r ~))2 § (1/3)(po) 

(~) (0) x v g T  /. /# 2 + ( l l l 2 (  N * )  ) ~" ( p k p _ k )  J//~a'-)/(J//~')2 + . . .  (4.18) 
k 

A J#4 = --( 1/3)(.//r ~2 ))2/Jr ~ ) - .  _ (1/30) .,,,J# (4)/6/at/r ( 0)2 + ( 1/41 ) 

X t' Jn""-"4/.-'et'~"~ ; -- (1/200)(JZ~2')'-/(./#~') 3 + (1/1800) 

x (J/~62~)2/(Jr 4 + . . .  + e (4.19) 

e are terms of the form (Pk, "''Pk,,), and ( . . . )  means the average of the 
type (4.12). We shall evaluate contributions of A J/2 and A~4 to (4.16). It 
can readily be shown that 

(po) =R(O)/V,,(O), 
f V~I I, k # 0  

(PkP -k )  = V ~ '  + [ R ( O ) / V ~ ]  2, k = 0  L 

We do not take into account terms (Pk, '"  "Pk,) because Eq. (4.6a) leads to 

R(O)=O and V~ ~ is a small value [fl,.YY'(k) J r 1 7 6  Then using 
(4.8)-(4.9), Ao~h', and A•h'4 can be expressed in terms of structure factors of 
the one-component hard-sphere system S,,(0) Lr.j',"~<~ The 

822/81/3-.4-10 
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higher order structure factors can be obtained from $2(0) as done in ref. 9 
by means of the familiar chain of equations for correlation functions. (~3) As 
a result for zl,,# 2 and AJr at i /=  0.15 we get [values S,,(0) have been taken 
from ref. 9] 

AJ~  = 0.026 + ... + (1/ (N*))(0 ,035 + . . . )  + ...  (4.20) 

zt J/t' 4 = - 3  J/-r ~ + (0.084 + 0.004 + ... ) + ( 1 / (N* ) ) 

x ( - 0 . 0 1 3  . . . .  ) + ( 1 / ( N * ) ) 2  (0.01 + . . . ) +  . . .  (4.21) 

I t  fo l lows f rom compar i son  o f  fo rmu la  (4.17a) w i th  (4.20) that  the 
contribution of A~'2 to the second cumulant is very insignificant. On the 
contrary, the first term of A J#4 in (4.21) has a significant influence on 
the value Jg4. It is clear from (4.17b) and (4.21) that for arbitrary q the 
following equality holds: 

J/'lt44) - 3J/[~' = - 2 ( N * )  

As a result the partition function (4.15) transforms into the form 

~ - ~ o ~  C (dy) N* (da) N" exp f l f l lco-( f l /2)  ~ r CkC_ k 
k<k* 

+i2rc ~ ?JkCk+(--i2rO'-/2!(2) - t  ~' ~#,TkY_k+(-- i2g)4/4!(2)  -2 
k < k *  k < k *  

"//~/4 l " k l " " "  'YknOk, + .'- +kn ]  E X (4,22) 
k, <:: k* J 

where . /~=  ( N * )  +~, ,,W4= - 2 ( N * )  +~,  and/~ is a small value. 
After the integration over ~'k in (4.22) we get 

H l -~" C f  go4(c) (•.)N* (4.23) 

where 

C = ,-,=o,-,=g [ Z(,,'/t'2, ,//r N~ .... /~,, = J , / 2 , , / ( N * )  (4.24) 

,o4(c' ) = exp [ flfil Co -- (1/2) ~ d(k) CkC -k 
k 

-- (a4/4!) Z Ckl " " " Ck,, ~kl + .-. + kn] ' k i < k *  (4.25) 
kl ,.. k,~ 

d ( k ) = a ~ - ~ f T " ( k } = a 2 - f l ( ( N * ) / V ) [ ~ ( k } - ~ , , b ( k } ]  (4.26/ 



Collective Variables Method for Multicomponent System 669 

[Z(Jr Jr'4)] u~ is the result of integration with respect to Yk for k <k* ,  

Z(Jgz, Jg4)=[(12)'/z/(2rO] [J~[-'/4 ~'/4exp~K,/4(~) (4.27) 

~=(3/4)(J~)2/lJg~l and KI/4(~) is the Bessel function of an imaginary 
argument. The coefficients a2 and a 4 are found from ~6~ 

a2 = (12) 1/2 IJY4[-,/2 ~(~),  a 4 = 6  1,~41-' L(~) (4.28) 

.,~ ( ~) = ~,lz { [ K3/,( ~)IK,/ ,(  ~) ] - 1 } 
(4.29) 

L(~) = 6[ J#(~)] 2 + 4~'/2.r (~) -- 1 

The functions ~114Kll4(~) , J{-(~), and L(~) are analytic functions on the 
whole real ~ axis. The relationships (4.23)-(4.29) and equations in the 
chemical potentials (4.6b) are starting formulas in studies of the ther- 
modynamic behavior of a binary system in the vicinity of the gas-gas 
separation critical point. It follows from (4.23)-(4.26) that the form of 
~o4(c) is analogous to the basic density measure of the 3D Ising model 
obtained in ref. 6 [the only difference is the presence of the linear term 
flfiiCo in (4.25)]. If we set J r  and J g 4 = - 2  in (4.22) we have 
a2 -~ 0.645 and a4 = 0.183 [see (4.28)]. Analogous values for corresponding 
coefficients were obtained in ref. 6. Having used the method of integration 
of the partition function of the 3D Ising model ~61 in the vicinity of the 
critical point, we found the thermodynamic functions of the binary sym- 
metrical mixture at T>~ T,. and T<~ T,. as functions of composition, tem- 
perature, and Hamiltonian initial parameters. The results of our study will 
be given in a subsequent paper. 

5. C O N C L U S I O N S  

The most important result of Section 2 is the explicit form of the 
cumulants. Of special note are formulas (2.19)-(2.20), which make it 
possible to find all the cumulants in the long-wavelength limit using 
thermodynamic relationships, from the matrix of derivatives dlX~o/dNj. 
Partial chemical potentials can be found in their turn from the familiar 
expression for the RS free energyJ ~41 The final result of that section is the 
expression for the functional of the grand partition function with explicit 
expressions for Hamiltonian coefficients. This expression can be used in 
studies of phase transitions in a multicomponent system. 

The CV method with RS has been used in the investigation of phase 
transitions in a binary system. The Gauss,an approximation of the func- 
tional of the grand partition function obtained in Section 2 has been 
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studied in detail. It was shown that  on the critical lines gas-l iquid and 
separat ion critical points can be identified completely in the case of  a 
symmetrical  mixture. When the gas-l iquid critical point is approached,  
total density fluctuations grow; and when the separat ion critical point  is 
approached,  fluctuations of relative density grow. For  an asymmetrical  
mixture the identification of the point on the critical line is not such a 
simple task and both gas-l iquid and separat ion phase transitions are 
accompanied by total density fluctuations as well as by relative density 
fluctuations. For  a binary symmetrical  system the relationships between the 
microscopic parameters  of  the Hamil tonian  which determine the alterna- 
tion of gas-l iquid and separat ion phase transitions have been found. 

Upon  integrating (4.1) over CV Pk and Ck with k > k *  for which 
inequalities ( f l /V)  "/7-(k) ~#(ol < 1 and ( f l /V)  "/i;'(k) j/~21 < 1 hold there is a 
transition to a crystal lattice. It was shown in Section 3 that  the CV Pk do 
not include the variable connected with the order parameter  for the separa- 
tion phase transition. Thus in the given considerations, the CV Pk are of 
secondary importance.  After integration over all Pk the fourfold basic 
density measure with respect to Ck was constructed. It was shown that  the 
task can be reduced to the 3D Ising model. 

APPENDIX A 

We have 

�9 4 ~ da  i = 21/2 I -a , ,b l  { aT, b + (a,,,, - abt,) 2 +_ (a,,,, -- abb) 

2 I/"~ x [ (a,,,, - abb) 2 + 4a,,b] -} - I  

Ab, i = 2-1/2 I -- a~b[/( --a~b){ aoa --abb + [ ( a , ,  --abb) 2 

+ 4a]b ] ,/2} {4a] b + (a , , , , -  abb) 2 -I- (a . .  -- abb) 

x [ ( a , , - - a b b )  2-a-a',2 ll/2t - t  t ~ a b  J J 

where the + and - signs correspond to i -  1 and i - 2 ,  respectively. 

APPENDIX B 

Cumulants  Jgc/,"l(O) with n~<4 are expressed in terms of initial 
cumulants  o/~,, ...~,,(0 ..... 0) (Yl ,.-., Y,, = a ,  b) as follows: 

Jr176 = Jr + J/cb(0) = ( N )  

.Jr = ./k',(0) -- Jc0(0 ) = ( N , , )  - ( N b )  

J / ~ ( 0 )  = J/C,,o(0) + JCbb(0) + 2J/C,,b(0) 
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~#~'  ) ( 0 )  = JC'oa(O) - -  J / ~ b ( O )  

`/#~2~(o) = ~ , , ( o )  + ` /#~(o)  - 2Jr 

.~#~)(o)  = ./~,,,,,(o) + J # b ~ ( 0 )  + 3 [ ~o, ,~(0)  + J r  ] 

J / ~ '  ~(0) = Jr - .#b~b(O) + Jr --  Jg,,~(O) 

Jr = ~ , , , , , (o )  + J /~b(O)  --  Jgo~ --  Jg,,~(O) 

J # ~ } ( 0 )  = ~ , , , , ( 0 )  - -  J r  - -  3 [ J~,,,~(0) + J / , , ,~(0)  ] 

J r176 = ~ ....... (0) + Jerboa(0) 

+ 4[ J/.,,,,b(0) + ` / # . b b o ( O ) ]  + 6,////aabb(0) 

-///(4' )(0) = Jr176 - J#bb~(O) + 2[  Jr - ` /g, ,~(O) ] 

.////~2)(0 ) __-- .//itaa,,a( O ) + .///[bbbb( O ) -- 2`///[aabb( O ) 

Jr = `/#....(0) -.///bbbb(O) - -  2 [ J~,..b(O) -- `/k',.O~(O)] 

~#~4)(0) = .//4,,...(0) + J # ~ ( O )  

- 4 [ . ~ , . . ~ ( 0 )  + J4,,~bO(0) ] + 6J/(aabb(O) (B.1) 

The same expressions hold at k i :~ 0. 
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